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Abstract
We study the effect of a tilted magnetic field on the orientation of Wigner
crystals by taking account of the width of a quantum well in the z-direction.
It is found that the cohesive energy of the electronic crystal is always lower
for the [110] direction parallel to the in-plane field. In a realistic sample,
a domain structure forms in the electronic solid and each domain orients
randomly when the magnetic field is normal to the quantum well. As the field
is tilted by an angle, the electronic crystal favours alignment along a preferred
direction which is determined by the in-plane magnetic field. The orientation
stabilization is strengthened for wider quantum wells as well as for larger tilt
angles. The possible consequence of the tilted field for the transport property
in the electronic solid is discussed.

1. Introduction

It was initially predicted by Wigner that two-dimensional (2D) electrons crystallize into a
triangular lattice in the low-density limit where the electron–electron interactions dominate
over the kinetic energy. In an ideally clean 2D system, the critical rs (rs = U/εF, corresponding
to the ratio of the Coulomb energy scale U to the kinetic energy scale of the Fermi energy εF)
was presented to be 37±5 from quantum Monte Carlo simulations [1]. A strong magnetic field
perpendicular to the 2D plane can effectively localize electron wavefunctions while keeping
the kinetic energy controlled [2]. Since this lessens the otherwise severe low-density condition,
it is believed that the Wigner crystal (WC) can be stabilized in a sufficiently strong magnetic
field [3–5]. Approximate calculations [6] have shown that the WC becomes the lowest-energy
state when the filling factor ν < 1/6 for the GaAs/AlGaAs electron system and around ν = 1/3
for the hole system. Since the impurities pin the electronic crystal, a domain structure forms
in a realistic sample [7]. While the electrons in a domain have an order as they are in the ideal
crystal, the orientations of the domains are random.

Currently, the measurement in a tilted field has become an established technique
to explore the various correlated properties in single-layer as well as in double-layer
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2D electron systems [8]. In a previous work [9], we have compared the ground state energies
of the generalized Laughlin liquid [10] to the electronic solid state at a given tilt angle. It was
found that the critical filling factor νc at the solid–liquid transition increases with increasing
tilt angle.

In this work, we will examine the relation of the orientation of the hexagonal WC to the
in-plane magnetic field as well as the width of the 2D quantum well. In a wide quantum
well, the electron wavefunction extends in the z-direction, hence may reduce the Coulomb
interactions. The in-plane field deforms the electron wavefunction, causing the interaction
energy to vary according to the different patterns or orientations of the electronic crystals. We
calculate the cohesive energy of the electronic crystal in a Hartree–Fock (HF) approximation.
We find that it becomes anisotropic in the tilted magnetic field. The [110] axis of the hexagonal
electronic crystal favours alignment along the direction of the in-plane magnetic field. This
trend of orientation stabilization is strengthened for larger tilt angles. It also shows that the
energy difference between two orthogonal orientations of the electronic crystal increases with
the width of the quantum well. The in-plane field favours the domains orienting to the same
direction. Thus, the effective impurity density is reduced as the field is tilted. We will discuss
the possible consequence of such an effect on the transport properties in the electronic solids.

2. Anisotropic cohesive energy of the electronic crystal

Consider an electron moving on an x–y plane under the influence of a strong magnetic field
which is tilted by an angle θ to the normal, with �B = (B tan θ, 0, B). The electron is confined
in a harmonic potential V (z) = 1

2 mb�
2z2 in the z-direction, where mb is the band mass of

the electron and � the characteristic frequency. Such a quantum well has been chosen to deal
with many quantum Hall systems [11, 12] to substitute the realistic potential which is either
triangular or square. It was also used to discuss the giant magneto-resistance induced by a
parallel magnetic field [13]. We work in the ‘Landau gauge’ by choosing the vector potential
�A = {0, x Bz − z Bx, 0}. The single-particle wavefunctions for the lowest LLs are

φX (�r) = 1√
L y

e−iX y/l2
B �

ω+
0

(
−(x − X) sin θ̃ + z cos θ̃

l+

)
�

ω−
0

(
(x − X) cos θ̃ + z sin θ̃

l−

)
, (1)

where lB is the magnetic length and l2± = h̄/mω±. X is an integer multiple of 2πl2
B/L y .

�
ω±
0 is the harmonic oscillator wavefunction in the lowest energy level corresponding to the

frequencies ω± and tan θ̃ = ω2
c

ω2
+−ω2

c
tan θ , with the cyclotron frequency ωc = eB/mbc. The

frequencies ω± are given by [10]

ω2
± = 1

2

(
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c
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)
±

√
1

4

(
�2 − ω2

c
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)2

+ �2ω2
c tan2 θ. (2)

The Hamiltonian is given by

Ĥ = 1

2Lx L y

∑
�q

ρ̂(�q)v(�q)ρ̂(−�q), (3)

where v(�q) = 4πe2

κ0(�q2
‖ +q2

z )
is the Fourier transformation of the Coulomb interaction. Here �q‖ is

the in-plane momentum and qz is the momentum perpendicular to the quantum well.
From equation (1), the electron density operator is expressed in the momentum space as

ρ̂(�q) =
∑

X

eiqx X a†
X−aX+ Fθ (�q), (4)
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where X± = X ± qyl2
B/2. a†

X (aX ) creates (destroys) an electron in the state φX . Here
Fθ (�q) = e−γ 2/4−α2/4, with

α2 = (qx cos θ̃ − qz sin θ̃ )2l2
− + q2

yl4
B/ l2

− cos2 θ̃

γ 2 = (qz cos θ̃ + qx sin θ̃ )2l2
+ + q2

yl4
B/ l2

+ sin2 θ̃ .
(5)

Substitute equation (4) into (3) and carry out the usual procedure of the HF decoupling of
the Hamiltonian; we get

HHF = nL

2

∑
�q‖

uHF(�q‖)
(−�q‖)
∑

X

e−iqx X a†
X+

aX−, (6)

where nL = 1/2πl2
B is the density of one completely filled LL and


(�q‖) = 2πl2
B

Lx L y

∑
X

e−iqx X 〈a†
X+

aX−〉 (7)

is the order parameter of the charge density wave (CDW). The HF potential is denoted with
uHF(�q‖) = uH(�q‖) − uex(�q‖). The Hartree term uH(�q‖) is given by (in units of e2/κ0lB)

uH(�q‖) =
∫

dqz

πlB

1

�q2
‖ + q2

z

[Fθ (�q)]2, (8)

and the exchange term uex(�q‖) in the reciprocal space turns out to be proportional to the
real-space Hartree potential as [11, 14]

uex(�q‖) = −2πl2
B

∫
d �p‖

(2π)2
uH( �p‖)ei �p‖×�q‖l2

B . (9)

Allowing the charge density wave by making the ansatz in the plane

〈a†
X−Qyl2

B/2
aX+Qyl2

B/2〉 = eiQx X
( �Q), (10)

where 
( �Q) is the order parameter, the cohesive energy can be calculated in the same way as
has been done in [2, 14, 15]:

Ecoh = 1

2ν

∑
�Q �=0

uHF( �Q)|
( �Q)|2, (11)

where ν is the filling factor of the lowest Landau level.
We carry out the self-consistent HF computation on a hexagonal lattice with the

wavevectors of the order parameters as �Q = [
( j + 1

2 )Q0,
√

3
2 k Q0

]
, where j and k are integers.

Following the procedure in [2], when N Q0
x Q0

yl2
B = 2Mπ , with N and M being integers, the

Landau level splits into N Hofstadter bands. When N = 6 and M = 1 the WC has the lowest
energy. In our calculations, we choose ν = 0.12, at which the ground state is a Wigner crystal.

Figure 1 displays the dependence of the cohesive energy of the electronic crystal on the
tilt angle θ for various orientation angles of the crystal to the in-plane magnetic field, where φ

is the angle between one side of the hexagonal lattice and the in-plane field. It shows that of
the two typical configurations of orientation with respect to the in-plane field, the [100] and
the [110], the energy is always lower for the [110] direction parallel to the in-plane field. The
energy difference increases with the tilt angle. In figure 2 we plot the relation of the cohesive
energy of the hexagonal lattice to the characteristic frequency � for tilt angles θ = 0◦ and
43.2◦, respectively. The [110] direction is along the in-plane field for both curves. The smaller
the characteristic frequency is, i.e., the wider the quantum well is, the higher the cohesive
energy. The in-plane magnetic field can lower the cohesive energy of the electronic crystal.
From figure 2 one can see that the energy difference becomes larger for wider quantum wells.
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Figure 1. A 3D graph of the cohesive energy of the WC with respect to the tilt angle θ as well as
the orientation angle φ.

Figure 2. The cohesive energy of the hexagonal lattice with the characteristic frequency � for tilt
angle θ = 0◦ and 43.2◦ , respectively. The energy difference increases with decreased �.

Our calculations show that when the tilt angle increases further, the energy difference will
increase significantly, implying that the in-plane magnetic field stabilizes the orientation of the
electronic crystal more effectively.

3. Transport property of the electronic solid

Pinning of the Wigner crystal by impurities as a result of breaking of the translational invariance
has been widely investigated [4, 16]. Sherman [7] had studied the angular pinning and the
domain structure of the electronic crystal mediated by acoustic-phonon in III–V semiconductor.
Our calculation shows that the in-plane magnetic field may serve as a tunable means to probe the
orientation of the crystal. Below we will explore the implications of the preferred orientation
of the electronic crystal to the transport measurements. In realistic samples a domain structure
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is formed due to a finite impurity density. The electrons in each domain are ordered as they
are in the crystal. In the absence of the in-plane field, each domain orients randomly, just like
the domains in ferromagnets. An ideal electronic crystal is an insulator and the conductivity
σxx ∝ e−
0/kB T [17, 18]. This thermal activation form of the conductivity implies that the
electrons are hopping with a fixed-range mechanism. It has been confirmed by experiments
that 
0 is of the order of 1 K [19]. In a realistic domain structure, however, the electrons may
hop between the edges of the randomly oriented domains. Since the experimentally reachable
temperature may be as low as 10 mK, the variable-range hopping mechanism may work in
this temperature regime [20]. In the following, we will discuss the possible consequence of
the tilted field on the transport properties.

In the usual Anderson localization the envelope of the wavefunction falls off exponentially
as φ0 ∼ e−r/ξ , where ξ is the localization length. With a magnetic field the electronic
wavefunction of a perfect system is essentially a Gaussian as φm ∼ e−r2/2l2

B . In a slightly
disordered system one can think that some of the states will be pinned at certain isolated
impurity sites. The mixing of these states due to quantum mechanical tunnelling leads to a
simple exponential tail in the wavefunction [18]. In a strong magnetic field, the electrons
condense into a crystal at lower filling factors. When the temperature is high enough the
transport is of the thermal activation form, which implies that the electrons are hopping with a
fixed-range mechanism [17, 18]. The hopping range is determined by R0 = √

1/πnI, where
nI is the impurity density. However, localized states may exist along the edges of the domains
of the electronic crystal because of the impurities. When the temperature is sufficiently low
that there is nearly no phonon with energy to assist the electron making the nearest hopping,
Mott’s variable-hopping mechanism [20] allows the electrons to hop a larger distance R > R0

to a state which has a smaller energy difference 
(R). In turn, the hopping conduction is
determined by the typical decay rate of the tails of the wavefunction. The hopping probability
is then given by

p ∝ exp[−R/ξ − 
/kBT ], (12)

where R = | �Ri − �R j | and 
 is the activation energy.
As in the quantum Hall effect regime, strong interaction between electrons leads to the

system condensing into a WC. The Coulomb gap depresses the density of states near the Fermi
surface [21, 22]. Efros et al [23] had derived the density of states near the Fermi surface
N(E) ∝ |
E | = |E − EF|. From these considerations, one can get the conductivity in the
variable-range hopping as [21]

σxx ∝ p ∝ e−A/T 1/2
, (13)

where A = [ 4h̄vF
kBξ

]1/2. The characteristic temperature T0 above which the fixed-range hopping

dominates is determined by R̄ = R0, namely

kBT0 = 2h̄2lB

mb
(πnI)

3/2. (14)

Now, we discuss the possible effect of the tilted field. As we have discussed, the
existence of an in-plane field deforms the electron wavefunction. However, this wavefunction
deformation does not qualitatively change the electron hopping mechanism at a given
temperature. The major effect of the tilted field would be on the variation of T0. As we
have shown, the in-plane field lowers the cohesive energy of the Wigner crystal and forces
the domains to align to the same direction. Thus, the role of the in-plane field is to integrate
the domains into larger ones. In this way, the in-plane field causes some of impurities to be
irrelevant and therefore reduces the effective impurity density. To determine T0 from (14), only
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the relevant impurities should be counted in. Hence, one can replace nI by an effective impurity
density nI(B‖). From equation (14), we see that T0 is sensitive to nI(B‖). In a strong magnetic
field the decay length is comparable to the cyclotron radius ξ ∼ Rc [24]. For a sample with
nI ∼ 1.0×108 cm−2, we estimate T0 ∼ 40 mK. This temperature is experimentally reachable.
Therefore, it is possible to observe a change of transport behaviour that displays a crossover
from the variable- to the fixed-range hopping under proper parameters and temperature as the
tilt angle rises.

4. Summary

We have shown that the WC has a preferred orientation with respect to the in-plane magnetic
field. We argued that there are domains in a realistic sample and predicted that the temperature
dependence of the transport behaviour may be different in a different temperature regime.
Moreover, we emphasized that this preferred orientation of the crystal may lead to an in-plane
field induced crossover from the variable-range hopping to the fixed-range hopping of the
transport mechanism in the 2D electronic solid. We expect future experiments to verify our
prediction.
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